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Abstract

In this study, the stress distribution in a nonhomogeneous anisotropic cylindrical body is investigated. Using equi-
librium equations, Hooke�s law and strain–displacement relations, a system of equations is obtained in cylindrical coor-
dinates in terms of stress potentials where elastic properties change in radial direction. Young�s and shear moduli are
expressed as power functions of r and Poisson�s ratios are kept constant. Closed-form solutions for stress potentials and
stress distribution are obtained for an axisymmetric, orthotropic cylinder. Results are checked with FE results. A pres-
surized thick walled cylinder example is studied in details. Stresses in radial, tangential and axial directions and Von
Mises stresses are plotted for different powers of r.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ceramic coatings are used to increase heat, wear and corrosion resistance, and strength of metals. But,
due to distinct interfaces introduced, they have their own shortcomings: there is a discontinuity where cera-
mic bonds to metal which makes the region more vulnerable to failure. This problem is thought to be over-
come by varying the material properties smoothly from metal to ceramic through coating. This continuous
change in properties improves the thermal and mechanical behaviors of the system. Materials that have a
continuous change of properties from one point to another are called functionally graded materials (FGMs).

In literature, there are various studies on thermal and mechanical analyses of functionally graded sys-
tems. A few works are on functionally graded cylindrical bodies. Horgan and Chan (1999a), studied
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pressurized nonhomogeneous isotropic hollow circular cylinder and disk with the Young�s modulus varying
along the radial direction. Stress distribution and vibrational response of a functionally graded rotating
disks are studied by Horgan and Chan (1999b) and by Güven and Çelik (2001). Temperature and stress
distribution in a hollow cylinder subjected to thermal shock are analyzed numerically by Awaji and Sivaku-
mar (2001). Jabbari et al. (2002) obtained axisymmetric mechanical and thermal stresses for a thick hollow
cylinder where temperature and pressure are applied at the inner and outer surfaces. In a later study by
Jabbari et al. (2003), nonaxisymmetric case of the previous problem has been solved using nonaxisymmetric
temperature distribution by expanding displacements and temperature distribution in Fourier series. Ther-
mal stresses are also studied for functionally graded hollow cylinder by Liew et al. (2003) dividing the whole
cylinder into discrete homogeneous sub-cylinders along the radial direction. Durodola and Attia (2000)
have obtained displacement and stresses for nonhomogeneous orthotropic rotating disk using numerical
integration and finite element method. In literature, there are only a few closed-form solutions in the field
of nonhomogeneous anisotropic bodies. For example, Kim and Paulino (2002) obtained exact solutions for
orthotropic, exponentially and linearly graded plates with fixed grip, tension and bending loading under
generalized plane stress conditions where elastic properties change along the width of the plate. Alshits
and Kirchner (2001) studied cylindrically anisotropic, radially nonhomogeneous materials under various
boundary conditions. They obtained displacements and first order stress functions in series form assuming
a plane strain case and using Stroh formalism for a general material nonhomogeneity.

An early study of the problem of a homogeneous anisotropic cylindrical body is by Lekhnitskii (1963)
where he formulated the problem in terms of stress potentials. A similar problem was investigated by Ting
(1996). He solved separately circular tube and bar subjected to a uniform pressure, shearing, torsion and
extension in terms of elastic stiffnesses. In a continuing paper, Ting (1999) derived solutions in terms of elas-
tic compliances similar to Lekhnitskii�s. Chen et al. (2000) added uniform temperature change along radial
direction to Ting�s problem. Tarn (2001) solved functionally graded anisotropic cylinder under thermome-
chanical loading using state space formulation.

The aim of this study is to analyze the effect of continuous nonhomogeneity (FGM) on anisotropic cylin-
drical bodies. Lekhnitskii�s (1963) stress formulation is used and closed-form solutions are compared to FE
results. As an example, a pressurized thick walled cylinder is studied in detail.
2. Stresses in a nonhomogeneous anisotropic cylindrical body

2.1. Governing equations

The body considered here is bounded by a cylindrical surface, possesses nonhomogeneous cylindrical
anisotropy and the axis of anisotropy, z, is parallel to the generator of the cylindrical surface, z 0. The prin-
cipal axes of inertia are x 0 and y 0. Polar axis that is parallel to x 0 is x. The center of gravity, O 0 is located at
xO0 , yO0 with respect to the x, y, z coordinate system. Fz is axial force,Mx0 ,My0 are bending moments and T is
torsion as shown in Fig. 1 (Lekhnitskii, 1963).

The assumptions are:

(1) the elastic properties aij, ai and bij (where aij which are given in terms of engineering properties in Eq.
(A.2b) are the elements of the compliance matrix in generalized Hooke�s law—Eq. (A.1), ai = ai3/a33
and bij = aij � ai3aj3/a33) are functions of r (radial direction). For simplicity, they will be denoted as
aij, ai and bij instead of aij(r), ai(r) and bij(r), throughout following derivations;

(2) there are no body forces;
(3) stresses do not depend on z direction, the axis of anisotropy.
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Fig. 1. Cylindrical body.

5570 A. Oral, G. Anlas / International Journal of Solids and Structures 42 (2005) 5568–5588
Integrating the z strains from strain–displacement relations in cylindrical coordinates with respect to z

and using the generalized Hooke�s law for strains except for �z (Lekhnitskii, 1963), displacements can be
obtained as follows:
ur ¼ � z2

2

o�z
or

þ z a15rr þ a25rh þ � � � þ a56srh �
oW
or

� �
þ U ;

uh ¼ � z2

2

1

r
o�z
oh

þ z a14rr þ a24rh þ � � � þ a46srh �
1

r
oW
oh

� �
þ V ;

w ¼ z�z þ W ;

9>>>>>>>=>>>>>>>;
ð1Þ
where U, V and W are functions of r and h.
Substituting the displacements above into the strain–displacement relations for �r, �h and crh, writing

these strains in terms of stresses and equating the coefficients of z, z2 to zero (because there should be
no dependence on z) following equations are obtained from the coefficients of z2:
o
2�z
or2

¼ 0;

o�z
or

þ 1

r
o2�z

oh2
¼ 0;

o2

oroh
�z
r

� �
¼ 0;

9>>>>>>>>>=>>>>>>>>>;
ð2Þ
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and from the coefficients of z:
o

or
a15rr þ a25rh þ � � � þ a56srh �

oW
or

� �
¼ 0;

o

oh
a14rr þ a24rh þ � � � þ a46srh �

1

r
oW
oh

� �
þ a15rr þ a25rh þ � � � þ a56srh �

oW
or

� �
¼ 0;

o

oh
a15rr þ a25rh þ � � � þ a56srh �

oW
or

� �
þ r

o

or
a14rr þ a24rh þ � � � þ a46srh �

1

r
oW
oh

� �
� a14rr þ a24rh þ � � � þ a46srh �

1

r
oW
oh

� �
¼ 0.

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

ð3Þ
Using Eqs. (1)–(3), definitions of strains in terms of displacements and the generalized Hooke�s law, one
gets the following equations for �r, �h and crh:
�r ¼
oU
or

¼ a11rr þ a12rh þ � � � þ a16srh;

�h ¼
1

r
oV
oh

þ U
r
¼ a12rr þ a22rh þ � � � þ a26srh;

crh ¼
1

r
oU
oh

þ oV
or

� V
r
¼ a16rr þ a26rh þ � � � þ a66srh.

9>>>>>>=>>>>>>;
ð4Þ
Solving Eqs. (2), an expression for �z can be obtained as follows:
�z ¼ Ar sin hþ Br cos hþ C; ð5Þ

where A, B and C are arbitrary constants. Then, using the generalized Hooke�s law and Eq. (5), rz is:
rz ¼
1

a33
ðAr sin hþ Br cos hþ CÞ � 1

a33
ða13rr þ a23rh þ a34shz þ a35srz þ a36srhÞ. ð6Þ
Substituting rz from the equation above into Eq. (3) and solving for oW
or and 1

r
oW
oh , one gets:
oW
or

¼ b15rr þ b25rh þ b45shz þ b55srz þ b56srh

þ a5ðAr sin hþ Br cos hþ CÞ � D1 sin h� D2 cos h;

1

r
oW
oh

¼ b14rr þ b24rh þ b44shz þ b45srz þ b46srh

þ a4ðAr sin hþ Br cos hþ CÞ � D1 cos hþ D2 sin h� D3r;

9>>>>>>>>=>>>>>>>>;
ð7Þ
similarly, from Eq. (4):
oU
or

¼ b11rr þ b12rh þ b14shz þ b15srz þ b16srh þ a1ðAr sin hþ Br cos hþ CÞ;

1

r
oV
oh

þ U
r
¼ b12rr þ b22rh þ b24shz þ b25srz þ b26srh þ a2ðAr sin hþ Br cos hþ CÞ;

1

r
oU
oh

þ oV
or

� V
r
¼ b16rr þ b26rh þ b46shz þ b56srz þ b66srh þ a6ðAr sin hþ Br cos hþ CÞ;

9>>>>>>=>>>>>>;
ð8Þ
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where
bij ¼ aij �
ai3aj3
a33

; ai ¼
ai3
a33

ði; j ¼ 1; 2; 4; 5; 6Þ ð9Þ
and D1, D2, D3 are arbitrary constants.

2.2. Stress function formulation

Stresses can be expressed in terms of stress potentials, bF ðr; hÞ and ŵðr; hÞ (Lekhnitskii, 1963), which sat-
isfy the equilibrium equations as follows:
rr ¼
1

r
obF ðr;hÞ

or
þ 1

r2
o2bF ðr;hÞ

oh2
; rh¼

o2bF ðr;hÞ
or2

; srh¼� o2

oroh

bF ðr;hÞ
r

 !
; srz¼

1

r
oŵðr;hÞ

oh
; shz¼�oŵðr;hÞ

or
.

ð10Þ
bF ðr; hÞ and ŵðr; hÞ will be denoted as bF and ŵ in the following equations for simplicity. Substituting stress
potentials into Eqs. (7) and eliminating W by means of differentiation with respect to r and h, one can
obtain:
N 00
3
bF þ N 0

2ŵ ¼ �a5Aþ 2a4 þ
da4
dr

r
� �

B
� �

cos hþ 2a4 þ
da4
dr

r
� �

Aþ a5B
� �

sin hþ a4
r
þ da4

dr

� �
C � 2D3;

ð11Þ

and similarly using Eqs. (8) and eliminating U and V, one gets:
N 0
4
bF þ N 0

3ŵ ¼ 2 a1 � a2ð ÞA� 2a6B½ � sin h
r

þ da1
dr

� 4
da2
dr

� �
A� da6

dr
B

� �
sin h

þ 2a6Aþ 2 a1 � a2ð ÞB½ � cos h
r

þ da6
dr

Aþ da1
dr

� 4
da2
dr

� �
B

� �
cos h

þ da1
dr

� 2
da2
dr

� �
C
r
� d2a2

dr2
A

� �
r sin h� d2a2

dr2
B

� �
r cos h� d2a2

dr2
C. ð12Þ
Here bij, ai are functions of r and N 0
2, N

0
3, N

00
3, N

0
4 are differential operators which are defined in Appendix A.

Note that a solution that satisfies the system of Eqs. (11) and (12) also satisfies equilibrium equations, gen-
eralized Hooke�s Law and strain–displacements relations.

2.3. Nonhomogeneous orthotropic axisymmetric case

In this section, the elastostatic problem of a body in the form of a hollow round cylinder of finite length,
where the axis of anisotropy coincides with the geometric axis of the body is considered. The tractions act-
ing on the inner and outer surfaces are inner and outer pressures, pi, po, respectively, and the tractions
which act on the end surfaces reduce to an axial force, Fz, and to a torsion, T. The inner and outer radii
are ri and ro as shown in Fig. 2.

Stresses depend only on r due to axisymmetry, and A and B that are multiplying h terms are set to zero.
In the axisymmetric case, bF , ŵ are functions of r only, bF ¼ F ðrÞ, ŵ ¼ wðrÞ. From now on, for simplicity
they will be denoted as F and w instead of F(r) and w(r). As a result of orthotropy, compliances a14, a24,
a34, a45, a46, a15, a25, a35, a56, a16, a26, a36 are zero. F and w in Eqs. (11) and (12) are therefore uncoupled.
Eliminating displacement U from �r and �h in Eq. (8) and using Eq. (10) for axisymmetric case, the following
equation replaces Eq. (12) for the axisymmetric, orthotropic case:
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Fig. 2. Axisymmetric cylindrical body.
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b22r
d3F
dr3

þ b22 þ r
db22

dr

� �
d2F
dr2

� b11

r
� db12

dr

� �
dF
dr

¼ a1 � a2 � r
da2
dr

� �
C; ð13Þ
and similarly, Eq. (7) yields the following to replace Eq. (11):
b44

dw
dr

¼ �D3r. ð14Þ
Boundary conditions on the cylindrical surfaces are:
rr ¼ �pi at r ¼ ri; ð15aÞ

rr ¼ �po at r ¼ ro. ð15bÞ

Boundary conditions on the ends are:
Z ro

ri

rzrdr ¼
F z

2p
; ð16aÞ

Z ro

ri

shzr2 dr ¼
T
2p

. ð16bÞ
2.4. Nondimensionalization of equations

Tractions and lengths are nondimensionalized using a pressure, p and the outer radius, ro. Dimensionless
terms are indicated with an overbar. Nondimensionalized forms of Eqs. (13) and (14) are given as follows:
�b22�r
d3F
d�r3

þ �b22 þ �r
d�b22

d�r

� �
d2F
d�r2

�
�b11

�r
� d�b12

d�r

� �
dF
d�r

¼ a1 � a2 � �r
da2
d�r

� �
C; ð17Þ



5574 A. Oral, G. Anlas / International Journal of Solids and Structures 42 (2005) 5568–5588
and
�b44

d�w
d�r

¼ �D3�r; ð18Þ
dimensionless boundary conditions are:
�rr ¼ � pi
p
¼ ��pi at �r ¼ ri

ro
¼ �ri; ð19aÞ

�rr ¼ � po
p
¼ ��po at �r ¼ 1; ð19bÞ

Z 1

�ri

�rz�rd�r ¼
F z

2p
; ð19cÞ

Z 1

�ri

�shz�r2 d�r ¼
T
2p

; ð19dÞ
where F z and T are F z=pr2o, T=pr
3
o, respectively.
3. Closed-form solution for nonhomogeneous orthotropic axisymmetric case

Elastic moduli are expressed as power functions of r (Jabbari et al., 2002; Yang, 2000) and their distribu-
tions are plotted for positive and negative n in Fig. 3(a) and (b) respectively. Poisson�s ratio, mij is taken con-
stant since the effect of the Poisson�s ratio on stresses is small (Kim and Paulino, 2002; Yang, 2000). As a
result, using Eq. (9) �bij, ai can be expressed in terms of engineering coefficients, see Eq. (A.2), as shown below:
�b11 ¼
1

Err
� m2zr
Ezz

� �
¼ 1

E
0

rr

� m2zr
E
0

zz

 !
1

�rn
;

�b12 ¼ � mrh
Err

� mhzmzr
Ehh

� �
¼ � mrh

E
0

rr

� mhzmzr

E
0

hh

 !
1

�rn
;

�b22 ¼
1

Ehh
� m2hzEzz

ðEhhÞ2

 !
¼ 1

E
0

hh

� m2hzE
0

zz

ðE0

hhÞ
2

 !
1

�rn
;

�b44 ¼
1

Ghz
¼ 1

G
0

hz�r
n
;

a1 ¼ �mzr;

a2 ¼ � mhzE
0

zz

E
0

hh

.

ð20Þ
Solution of Eq. (17) for F is:
F ¼ C
4E

0

hhðmhzE
0

zz � mzrE
0

hhÞ
ðE0

hh � m2hzE
0

zzÞððnþ 2Þ2 � k2Þðnþ 2Þ
�rnþ2 þ C1

2

nþ kþ 2

� �
�r

nþk
2 þ1ð Þ

þ C2

2

n� kþ 2

� �
�r

n�k
2 þ1ð Þ þ C3; ð21Þ
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where C1, C2 and C3 are arbitrary constants, k is:
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðnmhzE

0

zz þ 2mzrE
0

hhÞ
2E

0

rr þ n2E
0

rrE
0

hhE
0

zz þ 4ð1� nmrhÞðE
0

hhÞ
2E

0

zz

E
0

rrE
0

zzðE
0

hh � m2hzE
0

zzÞ

vuut . ð22Þ
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Solution of Eq. (18) for �w is:
�w ¼ �D3G
0

hz�r
nþ2

nþ 2
þ C4; ð23Þ
where C4 is an arbitrary constant. Deriving stresses from these stress potentials, one gets:
�rr ¼ C
4E

0

hhðmhzE
0

zz � mzrE
0

hhÞ
E
0

hh � m2hzE
0

zz

" #
�rn

ðnþ 2Þ2 � k2
þ C1�r

nþk
2 �1ð Þ þ C2�r

n�k
2 �1ð Þ; ð24aÞ

�rh ¼ C
4ðnþ 1ÞE0

hhðmhzE
0

zz � mzrE
0

hhÞ
E
0

hh � m2hzE
0

zz

" #
�rn

ðnþ 2Þ2 � k2
þ C1

nþ k
2

� �
�r

nþk
2 �1ð Þ þ C2

n� k
2

� �
�r

n�k
2 �1ð Þ; ð24bÞ

�rz ¼ C E
0

zzððnþ 2Þ2 � k2Þ þ 4mzrE
0

hhðmhzE
0

zz � mzrE
0

hhÞ
E
0

hh � m2hzE
0

zz

þ 4ðnþ 1ÞmhzE
0

zzðmhzE
0

zz � mzrE
0

hhÞ
E
0

hh � m2hzE
0

zz

" #
�rn

ðnþ 2Þ2 � k2

þ C1 mzr þ mhz
ðnþ kÞE0

zz

2E
0

hh

" #
�r

nþk
2 �1ð Þ þ C2 mzr þ mhz

ðn� kÞE0

zz

2E
0

hh

" #
�r

n�k
2 �1ð Þ;

ð24cÞ

and
�shz ¼ �/G
0

hz�r
nþ1. ð24dÞ
C, C1, C2 and �/ (note D3 ¼ �/) can be obtained from boundary conditions and these are given in Appendix
A. �/ is the relative angle of twist (Lekhnitskii, 1963).
4. Results

In the following examples analytical stress solutions are verified using FE method, different degrees of
material nonhomogeneity are studied by varying n and torsional load effect on stresses is analyzed.

4.1. Example 1: verification using FE method

A nonhomogeneous, orthotropic hollow cylinder loaded by �pi ¼ 10, �po ¼ 1, T ¼ 5 and F z ¼ 12 is studied.
Elastic properties are: Err ¼ 5� 105�r2, Ehh ¼ 7� 105�r2, Ezz ¼ 6� 105�r2, Ghz ¼ 1.5� 105�r2, mhz = 0.35, mz r =
0.2, mrh = 0.27.Dimensionless inner radius is�ri ¼ 0.5. Stresses are calculated fromEqs. (24a)–(24d) as follows:
�rr ¼ 0.2909�r2 þ 3.6741�r1.23 � 4.9650�r�1.23; ð25aÞ

�rh ¼ 0.8726�r2 þ 8.1904�r1.23 þ 1.1381�r�1.23; ð25bÞ

�rz ¼ 5.8739�r2 þ 3.1919�r1.23 � 0.6516�r�1.23 ð25cÞ

and
�shz ¼ 4.8504�r3. ð25dÞ

The results shown above are plotted with FE results in Figs. 4–6. In these figures, ‘‘analytical’’ refers to
closed-form results obtained in this study. Using symmetry boundary conditions 1/8 of the hollow cylinder
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is modelled with PATRAN and is solved with NASTRAN. FE(r10) and FE(r20) are finite element models
that contain 5000 elements with 23441 nodes (about 66740 dof) and 20000 elements with 87381 nodes
(about 254580 dof), respectively. Figs. 4–6 show that results are in good agreement with FE results.

4.2. Example 2: different degree of material nonhomogeneity varying n

As a second case, only a uniform inner pressure is applied as shown in Fig. 7 where �pi ¼ 1. The axial and
the torsional loads are not present either. Nonhomogeneity is along the r-direction, and it is in the form of a
power law, rn. When n is positive, the inner part of the cylinder has a smaller elastic modulus than that of
the outer part, the contrary is the case when n is negative. When n is equal to 0, the cylinder is
homogeneous.

Dimensionless engineering properties are the same as the previous example. �rr, �rh and �rz are plotted in
Figs. 8(a), 9(a) and 10(a) for positive n and in Figs. 8(b), 9(b) and 10(b) for negative n. �rr for positive and
negative n are shown in Figs. 8(a) and 8(b), �rr is compressive and has smaller absolute values for negative n.
This means that when the inner part has a larger elastic modulus, �rr decreases. On the other hand, in Fig.
9(a) for positive n, �rh is tensile and its value increases for decreasing values of n at the inner part, it de-
creases for decreasing values of n at the outer part. A similar behavior is observed for negative n in Fig.
9(b). Maximum value of hoop stress occurs at the inner part for n = �4. Hoop stress, �rh, is higher at
the inner wall and decreases toward the outer wall in the homogeneous case. For negative values of n,
the amplitude of �rh at the inner wall increases but its behavior through the wall thickness does not change
(Fig. 9(b)). For positive values of n however, from n = 2 and on, the inner wall value of the hoop stress is
less than the outer wall value, and it increases through the wall thickness (Fig. 9(a)) contrary to the homo-
geneous case. In Fig. 10(a) for positive n, �rz changes from compressive to tensile on the inner boundary, and
changes from tensile to compressive on the outer boundary for decreasing values of n. In Fig. 10(b) where n
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Fig. 7. A pressurized thick walled cylinder.
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is negative, �rz is tensile and its value increases with the decreasing values of n at the inner part, but it is
compressive, and its absolute value decreases for the decreasing values of n. For the homogeneous case,
�rz is tensile at the inner part and compressive at the outer part. Values of �rz are relatively small when com-
pared to �rr and �rh. The dimensionless Von Mises stress, �reff is:
�reff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�rr � �rhÞ2 þ ð�rh � �rzÞ2 þ ð�rz � �rrÞ2 þ 6ð�shz þ �srz þ �srhÞ

2

s
. ð26Þ
Values of n are varied between �4 and 4, and �reff is plotted in Fig. 11. For n = �4 the inner part of the
cylinder is more critical than the outer part and for n = 4 the outer part the cylinder is more critical than
the inner part due to the larger �reff . An n value that equates values of �reff at the inner and the outer parts of
the cylinder provides an optimum situation since values of �reff is less than the values at the boundaries that
means it has a convex behavior for a given n. For this example, when n = 2.39, �reff is equal both at the inner
and the outer parts of the cylinder as shown in Fig. 12.

4.3. Example 3: torsional effect

Third example will be the addition of a torque T ¼ 5 to example 2. �rr, �rh and �rz will be the same,
because there is no effect of torque on normal stresses. �shz is plotted in Fig. 13(a) for positive n and
in Fig. 13(b) for negative n. For the homogeneous case, n = 0, �shz is linear. On the other hand, an inter-
esting situation is that shz has a constant value along the radial direction for n = �1. This also indicates

that the body has a constant relative angle of twist, / for n = �1. (Note that �shz ¼ �/G
0

hz�r
nþ1 and when

n = �1, �rnþ1 becomes 1.)
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Fig. 11. Von Mises stress, �reff versus �r and n, �ri ¼ 0.5 and �pi ¼ 1.
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5. Concluding remarks

In this study, effects of radially varying moduli on the stress distribution of nonhomogeneous anisotropic
cylindrical bodies are investigated. A system of equations is obtained for the most general nonhomogeneous
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fully anisotropic cylindrical body. Closed-form stress solutions for nonhomogeneous orthotropic axisym-
metric cylindrical body are obtained with Young�s and shear moduli varying according to a power law,
rn. Results are verified using a three-dimensional finite element model. A pressurized thick walled cylinder
is studied in detail. Stresses for various values of n are obtained including the homogeneous case (n = 0).

Although very difficult and expensive to manufacture, above results show that FGM systems can be de-
signed for various purposes of applications. Material distribution can be tailored to obtain a desired stress
distribution.
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Appendix A

Generalized Hooke�s law is:
�r

�h

�z

chz

crz

crh

26666666666664

37777777777775
¼

a11 a12 a13 a14 a15 a16

a12 a22 a23 a24 a25 a26

a13 a23 a33 a34 a35 a36

a14 a24 a34 a44 a45 a46

a15 a25 a35 a45 a55 a56

a16 a26 a36 a46 a56 a66

26666666666664

37777777777775

rr

rh

rz

shz

srz

srh

26666666666664

37777777777775
. ðA:1Þ
Orthotropic compliance:
a11 a12 a13 0 0 0

a12 a22 a23 0 0 0

a13 a23 a33 0 0 0

0 0 0 a44 0 0

0 0 0 0 a55 0

0 0 0 0 0 a66

2666666666664

3777777777775
; ðA:2aÞ
where
a11 ¼
1

Err
; a22 ¼

1

Ehh
; a33 ¼

1

Ezz
;

a12 ¼ � mrh
Err

; a13 ¼ � mzr
Ezz

; a23 ¼ � mhz
Ehh

;

a44 ¼
1

Ghz
; a55 ¼

1

Grz
; a66 ¼

1

Grh
;

ðA:2bÞ
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Differential operators for the system of Eqs. (12) and (11) are as follows:
N 0
2 ¼ b44

o2

or2
� 2b45

r
o2

oroh
þ b55

1

r2
o2

oh2
þ b44

r
þ db44

dr

� �
o

or
� db45

dr
1

r
o

oh
; ðA:3aÞ

N 0
3 ¼ �b24

o3

or3
þ b25

r
þ b46

r

� �
o3

or2oh
� b14

r2
þ b56

r2

� �
o3

oroh2
þ b15

r3
o3

oh3
þ b14

r
� 2b24

r
� 2

db24

dr

� �
o2

or2

� b15

r2
� b46

r2
� 2

r
db25

dr
� 1

r
db46

dr

� �
o2

oroh
� 1

r2
db56

dr
o2

oh2
þ 1

r
db14

dr
� 2

r
db24

dr
� d2b24

dr2

� �
o

or

þ b15

r3
� 1

r2
db15

dr
þ 1

r
d2b25

dr2

� �
o

oh
; ðA:3bÞ

N 00
3 ¼ �b24

o3

or3
þ b25

r
þ b46

r

� �
o3

or2oh
� b14

r2
þ b56

r2

� �
o3

oroh2
þ b15

r3
o3

oh3
� b14

r
þ b24

r
þ db24

dr

� �
o2

or2

þ b15

r2
� b46

r2
þ 1

r
db46

dr

� �
o2

oroh
þ b14

r3
þ b56

r3
� 1

r2
db14

dr

� �
o2

oh2

� 1

r
db14

dr
o

or
þ b46

r3
� 1

r2
db46

dr

� �
o

oh
; ðA:3cÞ

N 0
4 ¼ b22

o4

or4
� 2b26

r
o4

or3oh
þ 2b12

r2
þ b66

r2

� �
o4

or2oh2
� 2b16

r3
o4

oroh3
þ b11

r4
o4

oh4
þ 2b22

r
þ 2

db22

dr

� �
o3
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� 3

r
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dr
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þ b66
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� 2

r2
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dr
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r2
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� �
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� 1

r3
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� �
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oh3

� b11
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r
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dr
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r
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� �
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or2
� 2b16

r3
þ 2b26

r3
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r2
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r
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� �
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� �
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r2
db11

dr
þ 1

r
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r3
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� �
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: ðA:3dÞ
Integrating constants, C, C1, C2 and obtained from boundary conditions are:
C ¼ E
0

hh 4p�pi

�
ðnþ 2Þðnþ kþ 2Þg�k�r

ðnþ2Þ
i � ðnþ 2Þðn� kþ 2Þgk�r

ðnþkþ2Þ
i þ ððnþ 2Þðn� kþ 2Þgk

��

�ðnþ 2Þðnþ kþ 2Þg�kÞ�r
nþk
2 þ1ð Þ

i

�
þ 4p�po

�
ðnþ 2Þðnþ kþ 2Þg�k�r

ðnþkÞ
i � ðnþ 2Þðn� kþ 2Þgk�rni

þððnþ 2Þðn� kþ 2Þgk � ðnþ 2Þðnþ kþ 2Þg�kÞ�r
ð3nþk

2 þ1Þ
i

�
þ F z ðnþ 2Þðnþ kþ 2Þðn� kþ 2Þð�rðnþkÞ

i � �rni Þ
� �	�


K; ðA:4aÞ
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C1 ¼ 2p�pi 2ðnþ 2Þðnþ kþ 2ÞE0

hhlg�k �r
nþk
2 þ1ð Þ

i � �rðnþ2Þ
i

� ���
þ ðnþ 1Þðnþ kþ 2Þðn� kþ 2ÞmhzE

0

zzl
�

þððnþ 2Þ2 � k2ÞE0

hhðE
0

zz þ mzrlÞ
�

�r
3nþk
2 þ3ð Þ

i � �r
nþk
2 þ1ð Þ

i

� ��
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hhlg�k �rð2nþ2Þ
i � �r
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2 þ1ð Þ

i

� ��
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0

zzlþ ððnþ 2Þ2 � k2ÞE0

hhðE
0

zz þ mzrlÞ
� �
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i

� ��
þ F z ðnþ 2Þðnþ kþ 2Þðn� kþ 2ÞE0

hhl �rni � �r
3nþk
2 þ1ð Þ

i

� �� ��

K; ðA:4bÞ

C2 ¼ 2p�pi 2ðnþ 2Þðn� kþ 2ÞE0

hhlgk �rðnþkþ2Þ
i � �r

nþk
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i

� ���
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i

� �
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K; ðA:4cÞ

�/ ¼ ðnþ 4ÞT
2pG

0

hz 1� �rðnþ4Þ
i

� � when n 6¼ �4;

�/ ¼ � T

2pG
0

hz ln�ri
when n ¼ �4;

ðA:4dÞ
where K is:
K ¼ 2p ðnþ 1Þðnþ kþ 2Þðn� kþ 2ÞmhzE
0

zzlþ ððnþ 2Þ2 � k2ÞE0

hhðE
0
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ðA:5Þ
and l, gk, g�k are given below:
l ¼ 4E
0

hhðmhzE
0

zz � mzrE
0

hhÞ
ðE0

hh � m2hzE
0

zzÞððnþ 2Þ2 � k2Þ
; ðA:6aÞ
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gk ¼ mzr þ mhz
ðnþ kÞE0
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0
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; ðA:6bÞ
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2E
0
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