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Abstract

In this study, the stress distribution in a nonhomogeneous anisotropic cylindrical body is investigated. Using equi-
librium equations, Hooke’s law and strain—displacement relations, a system of equations is obtained in cylindrical coor-
dinates in terms of stress potentials where elastic properties change in radial direction. Young’s and shear moduli are
expressed as power functions of r and Poisson’s ratios are kept constant. Closed-form solutions for stress potentials and
stress distribution are obtained for an axisymmetric, orthotropic cylinder. Results are checked with FE results. A pres-
surized thick walled cylinder example is studied in details. Stresses in radial, tangential and axial directions and Von
Mises stresses are plotted for different powers of r.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ceramic coatings are used to increase heat, wear and corrosion resistance, and strength of metals. But,
due to distinct interfaces introduced, they have their own shortcomings: there is a discontinuity where cera-
mic bonds to metal which makes the region more vulnerable to failure. This problem is thought to be over-
come by varying the material properties smoothly from metal to ceramic through coating. This continuous
change in properties improves the thermal and mechanical behaviors of the system. Materials that have a
continuous change of properties from one point to another are called functionally graded materials (FGMs).

In literature, there are various studies on thermal and mechanical analyses of functionally graded sys-
tems. A few works are on functionally graded cylindrical bodies. Horgan and Chan (1999a), studied
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pressurized nonhomogeneous isotropic hollow circular cylinder and disk with the Young’s modulus varying
along the radial direction. Stress distribution and vibrational response of a functionally graded rotating
disks are studied by Horgan and Chan (1999b) and by Giiven and Celik (2001). Temperature and stress
distribution in a hollow cylinder subjected to thermal shock are analyzed numerically by Awaji and Sivaku-
mar (2001). Jabbari et al. (2002) obtained axisymmetric mechanical and thermal stresses for a thick hollow
cylinder where temperature and pressure are applied at the inner and outer surfaces. In a later study by
Jabbari et al. (2003), nonaxisymmetric case of the previous problem has been solved using nonaxisymmetric
temperature distribution by expanding displacements and temperature distribution in Fourier series. Ther-
mal stresses are also studied for functionally graded hollow cylinder by Liew et al. (2003) dividing the whole
cylinder into discrete homogeneous sub-cylinders along the radial direction. Durodola and Attia (2000)
have obtained displacement and stresses for nonhomogeneous orthotropic rotating disk using numerical
integration and finite element method. In literature, there are only a few closed-form solutions in the field
of nonhomogeneous anisotropic bodies. For example, Kim and Paulino (2002) obtained exact solutions for
orthotropic, exponentially and linearly graded plates with fixed grip, tension and bending loading under
generalized plane stress conditions where elastic properties change along the width of the plate. Alshits
and Kirchner (2001) studied cylindrically anisotropic, radially nonhomogeneous materials under various
boundary conditions. They obtained displacements and first order stress functions in series form assuming
a plane strain case and using Stroh formalism for a general material nonhomogeneity.

An early study of the problem of a homogeneous anisotropic cylindrical body is by Lekhnitskii (1963)
where he formulated the problem in terms of stress potentials. A similar problem was investigated by Ting
(1996). He solved separately circular tube and bar subjected to a uniform pressure, shearing, torsion and
extension in terms of elastic stiffnesses. In a continuing paper, Ting (1999) derived solutions in terms of elas-
tic compliances similar to Lekhnitskii’s. Chen et al. (2000) added uniform temperature change along radial
direction to Ting’s problem. Tarn (2001) solved functionally graded anisotropic cylinder under thermome-
chanical loading using state space formulation.

The aim of this study is to analyze the effect of continuous nonhomogeneity (FGM) on anisotropic cylin-
drical bodies. Lekhnitskii’s (1963) stress formulation is used and closed-form solutions are compared to FE
results. As an example, a pressurized thick walled cylinder is studied in detail.

2. Stresses in a nonhomogeneous anisotropic cylindrical body
2.1. Governing equations

The body considered here is bounded by a cylindrical surface, possesses nonhomogeneous cylindrical
anisotropy and the axis of anisotropy, z, is parallel to the generator of the cylindrical surface, z’. The prin-
cipal axes of inertia are x’ and y’. Polar axis that is parallel to x’ is x. The center of gravity, O’ is located at
Xo, ¥y With respect to the x, y, z coordinate system. F. is axial force, M,,, M,; are bending moments and 7'is
torsion as shown in Fig. 1 (Lekhnitskii, 1963).

The assumptions are:

(1) the elastic properties a;;, o; and f5;; (where a; which are given in terms of engineering properties in Eq.
(A.2b) are the elements of the compliance matrix in generalized Hooke’s law—Eq. (A.1), o; = a;3/as3
and f; = a; — apnap/ass) are functions of r (radial direction). For simplicity, they will be denoted as
ay, o; and B; instead of a,(r), «(r) and B;(r), throughout following derivations;

(2) there are no body forces;

(3) stresses do not depend on z direction, the axis of anisotropy.
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Fig. 1. Cylindrical body.

Integrating the z strains from strain—displacement relations in cylindrical coordinates with respect to z
and using the generalized Hooke’s law for strains except for €. (Lekhnitskii, 1963), displacements can be

obtained as follows:

z% Oe, ow
U =—5 —+z| a150, + axs09 + - +aseTo — = | + U,
2 or or
B 221662+ L T 1 oW Ly
Ug = 2 00 Z\| A140, T Q2409 A46Tr0 - o0 )
w=ze + W,

where U, V and W are functions of r and 0.

Substituting the displacements above into the strain—displacement relations for €., ¢y and y,, writing
these strains in terms of stresses and equating the coefficients of z, z* to zero (because there should be

no dependence on z) following equations are obtained from the coefficients of z*:
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and from the coefficients of z:

0 ow
k. 0150r+a2509+"'+a56ﬂ9—7 =
or
¢ + + o+ o
20 a140, T A2409 A46Tr0 a

+ <0150'r + axsog + -+ -+ aseT0 — )

20 (61150; + axsop + -+ aseTo — ﬁ)

—l—rgaa—i—aa—i— —|—ar—la—W
o \ 4140r 2400 46Tr0 20

r 00

laW
—\| @140, + a0+ - + As6T9 — = 0.

Using Egs. (1)—(3), definitions of strains in terms of displacements and the generalized Hooke’s law, one
gets the following equations for €., €y and y,q:
€& == =4ano0, +apoy)+ -+ aty,
or
1oV U
€y :—@4-— 120, + anog + - -+ + a7, 4)
lau oV v

Vo = 30 + i = a160, + A209 + - - + A66T19-

Solving Eqs. (2), an expression for €, can be obtained as follows:
€. = Arsin + Brcos0 + C, (5)
where 4, B and C are arbitrary constants. Then, using the generalized Hooke’s law and Eq. (5), o is:
1 . 1
0, =— (Arsin 0 + Brcos 0 + C) — — (a130, + ax309 + a3ty + a3s7,. + a36Trp)- (6)
ass ass
Substituting ¢, from the equation above into Eq. (3) and solving for ¥ and 1 %V(,V, one gets:
ow
P Bisor + Basoo + Basto: + PssTr + BseTro
+os(drsin 0+ Brcos 0 + C) — Dy sin 0 — D, cos 0,

1ow

- o0 = B140, + Bra0o + BasTo- + PasTrz + PagTro

+ o4(Arsin @ + Brcos 0 + C) — Dy cos 0 + D, sin 0 — Dsr,
similarly, from Eq. (4):

oU .
o = P10, + Bra0o + Brate: + BisT + PrgTro + ay (Arsin + Brcos 0 + C),

1oV U

; % + ﬁ]zor + ﬁzza() + ﬂ24‘fgz + ﬁzs‘fyz + ﬁ26fr() + OCZ(AV Sll’l 0 + BVCOS 9 + C), (8)

16U 6V v

-0 o = PB160r + Pas0o + BasTo: + BssTr= + BesTro + ot(Ar sin 0 + Brcos 0 + C),
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where
Bp=a;— 2 =" (j=1,2,4,5,6) 9)

)
ass ass

and D;, D,, D; are arbitrary constants.
2.2. Stress function formulation

Stresses can be expressed in terms of stress potentials, F (r,0) and x/A/(r, 0) (Lekhnitskii, 1963), which sat-
isfy the equilibrium equations as follows:

10F (r,0) 10°F(r,0) O°F (r,0) * (F(r,0) 10y/(r,0) oy (r,0)
Op=-— +_ 9 09:77 Trg = — 9 Tz =— 9 T = — .
roor 2 0? or? oro0 r r 00 or
(10)

F (r,0) and x/A/(r, 0) will be denoted as F and fb in the following equations for simplicity. Substituting stress
potentials into Egs. (7) and eliminating W by means of differentiation with respect to r and 6, one can
obtain:

Ng’ﬁ +N’2{p = |—asd + 2a4+%r Bl cos0+ 20c4+%r A+ osB| sin 0 + a—4+% C —2D;,
dr dr r dr
(11)
and similarly using Eqgs. (8) and eliminating U and V, one gets:
PN Ja sin 6 doy doy dag .
N4F +N3lﬁ = [2(0(1 — OCQ)A — 20‘63]7 + |:<E — 45)/1 — ?B] sin 0
cos 0 dO((, dOCl dO(z
+ [20(614 + 2(0(1 — OCz)B] T"‘ [EA + (E — 4? B| cos O

dO(] dOCz C d2062 . d20(2 dZOCZ
——2—|—=|—=4 - == -—C. 12
+ {dr dr} r {drz rsin 0 02 B|rcos0 02 C (12)

Here f;;, o; are functions of r and N, N, N, N}, are differential operators which are defined in Appendix A.
Note that a solution that satisfies the system of Eqgs. (11) and (12) also satisfies equilibrium equations, gen-
eralized Hooke’s Law and strain—displacements relations.

2.3. Nonhomogeneous orthotropic axisymmetric case

In this section, the elastostatic problem of a body in the form of a hollow round cylinder of finite length,
where the axis of anisotropy coincides with the geometric axis of the body is considered. The tractions act-
ing on the inner and outer surfaces are inner and outer pressures, p;, po, respectively, and the tractions
which act on the end surfaces reduce to an axial force, F., and to a torsion, 7. The inner and outer radii
are r; and r, as shown in Fig. 2.

Stresses depend only on r due to axisymmetry, and 4 and B that are multiplying 0 terms are set to zero.
In the axisymmetric case, F,  are functions of r only, F = F(r), Y = y(#). From now on, for simplicity
they will be denoted as F and  instead of F(r) and y(r). As a result of orthotropy, compliances a4, d»4,
34, Ays, Age, 15, A2, 435, s, 16, Uog, d3g are zero. F and  in Egs. (11) and (12) are therefore uncoupled.
Eliminating displacement U from ¢, and ¢4 in Eq. (8) and using Eq. (10) for axisymmetric case, the following
equation replaces Eq. (12) for the axisymmetric, orthotropic case:
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Fig. 2. Axisymmetric cylindrical body.
d&’F dp,\ &*°F (B, dB,)\ dF do,
_— _— ] — — _—— | — = — —_ )y — 1
Pror dr? + (ﬁzz tr dr ) dr? ( r dr /) dr e dr ¢ (13)
and similarly, Eq. (7) yields the following to replace Eq. (11):
dy
— = —Dasr. 14
Bas dr 37 (14)
Boundary conditions on the cylindrical surfaces are:
g, =—p, atr=r, (15a)
g, =—-p, atr=r. (15b)
Boundary conditions on the ends are:
Fo F
rdr ===, 16
/r; ordr = (16a)
Fo T
/ri T dr = s (16b)

2.4. Nondimensionalization of equations

Tractions and lengths are nondimensionalized using a pressure, p and the outer radius, r,. Dimensionless
terms are indicated with an overbar. Nondimensionalized forms of Eqgs. (13) and (14) are given as follows:

o dF (o dBp\dF (B dp,) dF _da
et (Bt ) g (50 &= (0= e (7

r
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and

oody
/3445 = —Dsr,

dimensionless boundary conditions are:

_ Di _ _ ri _
ar:__lz_pi atr=—':ri,

p o

where F. and T are F./pr2, T/prl, respectively.

3. Closed-form solution for nonhomogeneous orthotropic axisymmetric case

(19a)

(19b)

(19¢)

(19d)

Elastic moduli are expressed as power functions of r (Jabbari et al., 2002; Yang, 2000) and their distribu-
tions are plotted for positive and negative n in Fig. 3(a) and (b) respectively. Poisson’s ratio, v; is taken con-
stant since the effect of the Poisson’s ratio on stresses is small (Kim and Paulino, 2002; Yang, 2000). As a

result, using Eq. (9)

ij>

- 1 v 1 v 1
Bu=\=——-= = \|l= =0 | 2>
Err Ezz E . E r

rr zz

B . ( Vi V@zvzr> o Vo Vo Vzr 1
p=\—==—~=)=|—=—~—= | >
E, Eyp E, E, r

7 1 1
M= T H_>
G()z G@ 7"
o = —Vz,
—=0
o VUZE 2z
[e%) —
E 00

Solution of Eq. (17) for F is:

—0 —0 —0
4E 5y (voE, — v Epy) 724 C, ( 2 >r(n5/+ 1
(Epy — viE)((n+2)" — ) (n+2) ntit2

2 el
+C2(n—/1+2)r i +G,

F=C

o,; can be expressed in terms of engineering coefficients, see Eq. (A.2), as shown below:

(20)
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Fig. 3. E/E, versus r/ro, n is (a) positive and (b) negative, ri/r, =0.5.
where C;, C, and Cj are arbitrary constants, A is:
—0 —0 2720 50 =0 =0 —0 2520
)= _(nvezEzz + 2VZVE96) Err +n ErrEHGEzz + 4(1 — nv”g)(EOG) Ezz (22)
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Solution of Eq. (18) for i is:
53632?”+2
n+2

where C, is an arbitrary constant. Deriving stresses from these stress potentials, one gets:

¥ = Cs, (23)

[ =0 —=0 —=0
4E99 (ngEZZ — vZ"EQH )

7 ) a4
5, = C | LoVotz — Y + ) 4 o), (24a)
| By viE. |+ -2
r —0 —0 —0
4 HE B — v, E 7 AN AW
gg=0C (I’l+ )_009(\1(1 iO v 09) 3 2+C1 (n+/h>r(2 1) +C2<n )}"( 2 1), (24b)
L E()O - V%zEzz (}’l + 2) - }v 2 2
i —=0 —=0 —=0 —=0 =0 —=0
v, E,(voE. — v,.E dn+ V)veE_(ve,E. — v, E 7
G.=C ESZ((nJrZ)Z _;Lz) + Hig 0. 222 - 00) + ( )ﬁo = ( Uz—zé 00) . .
L E()U - v@zEzz E(/() - v@zEzz (n + 2) - /1
—0 —=0
;L E nti - )L, E n—7a
+ Cl Vzr + VOZ(II%O)ZZ ?(Til) + C2 Vzr + v()z(nfo)zz ?(771)7
00 00
(24¢)
and
T = $G . (24d)

C, Cy, Cyand ¢ (note D3 = ¢) can be obtained from boundary conditions and these are given in Appendix
A. ¢ is the relative angle of twist (Lekhnitskii, 1963).

4. Results

In the following examples analytical stress solutions are verified using FE method, different degrees of
material nonhomogeneity are studied by varying n and torsional load effect on stresses is analyzed.

4.1. Example 1: verification using FE method

A nonhomogeneous, orthotropic hollow cylinder loaded by p; = 10, p, = 1, T = 5and F. = 12 s studied.

Elastic properties are: E,, = 5 x 10°72, Egg = 7 x 10°7, E.. = 6 x 10°7, G = 1.5 x 10°72, vp. = 0.35, v. , =
0.2, v, = 0.27. Dimensionless inner radius is 7 = 0.5. Stresses are calculated from Eqs. (24a)—(24d) as follows:

, = 0.29097 + 3.67417"%3 — 4.96507 %3, (25a)

Gy = 0.87267* + 8.19047"% + 1.13817 "%, (25b)

. = 5.87397 + 3.19197'%* — 0.65167 "% (25¢)
and

Ty, = 4.85047°. (25d)

The results shown above are plotted with FE results in Figs. 4-6. In these figures, “analytical” refers to
closed-form results obtained in this study. Using symmetry boundary conditions 1/8 of the hollow cylinder
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Fig. 6. o./p versus r/r, where n =2, 7 = 0.5, p, = 10, p, = 1 and F. = 12.

is modelled with PATRAN and is solved with NASTRAN. FE(r10) and FE(r20) are finite element models
that contain 5000 elements with 23441 nodes (about 66740 dof) and 20000 elements with 87381 nodes
(about 254 580 dof), respectively. Figs. 4-6 show that results are in good agreement with FE results.

4.2. Example 2: different degree of material nonhomogeneity varying n

As a second case, only a uniform inner pressure is applied as shown in Fig. 7 where p, = 1. The axial and
the torsional loads are not present either. Nonhomogeneity is along the r-direction, and it is in the form of a
power law, r”". When n is positive, the inner part of the cylinder has a smaller elastic modulus than that of
the outer part, the contrary is the case when #n is negative. When n is equal to 0, the cylinder is
homogeneous.

Dimensionless engineering properties are the same as the previous example. 6,, 9 and g, are plotted in
Figs. 8(a), 9(a) and 10(a) for positive n and in Figs. §(b), 9(b) and 10(b) for negative n. &, for positive and
negative n are shown in Figs. 8(a) and 8(b), 6, is compressive and has smaller absolute values for negative n.
This means that when the inner part has a larger elastic modulus, &, decreases. On the other hand, in Fig.
9(a) for positive n, g, is tensile and its value increases for decreasing values of n at the inner part, it de-
creases for decreasing values of n at the outer part. A similar behavior is observed for negative n in Fig.
9(b). Maximum value of hoop stress occurs at the inner part for n = —4. Hoop stress, Gy, is higher at
the inner wall and decreases toward the outer wall in the homogeneous case. For negative values of n,
the amplitude of &y at the inner wall increases but its behavior through the wall thickness does not change
(Fig. 9(b)). For positive values of n however, from n = 2 and on, the inner wall value of the hoop stress is
less than the outer wall value, and it increases through the wall thickness (Fig. 9(a)) contrary to the homo-
geneous case. In Fig. 10(a) for positive n, 6, changes from compressive to tensile on the inner boundary, and
changes from tensile to compressive on the outer boundary for decreasing values of x. In Fig. 10(b) where n
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Yy

Fig. 7. A pressurized thick walled cylinder.

is negative, g, is tensile and its value increases with the decreasing values of n at the inner part, but it is
compressive, and its absolute value decreases for the decreasing values of n. For the homogeneous case,
0. 1s tensile at the inner part and compressive at the outer part. Values of . are relatively small when com-
pared to &, and 5. The dimensionless Von Mises stress, . is:

— — \2 — —\2 — —\2 — _ _
r - Uz z— Yr 6 z rz 7
6_eff:\/(6 G9) + (69— 0.) +(6.—a,) +6(Te. + 7 +’C9). (26)

2

Values of n are varied between —4 and 4, and & is plotted in Fig. 11. For n = —4 the inner part of the
cylinder is more critical than the outer part and for n = 4 the outer part the cylinder is more critical than
the inner part due to the larger .. An n value that equates values of . at the inner and the outer parts of
the cylinder provides an optimum situation since values of G is less than the values at the boundaries that
means it has a convex behavior for a given n. For this example, when n = 2.39, 6. 1s equal both at the inner
and the outer parts of the cylinder as shown in Fig. 12.

4.3. Example 3: torsional effect

Third example will be the addition of a torque T = 5 to example 2. &,, 64 and . will be the same,
because there is no effect of torque on normal stresses. 7y, is plotted in Fig. 13(a) for positive n and
in Fig. 13(b) for negative n. For the homogeneous case, n =0, 7y, is linear. On the other hand, an inter-
esting situation is that 7. has a constant value along the radial direction for » = —1. This also indicates
that the body has a constant relative angle of twist, ¢ for n = —1. (Note that 7y, = (}5@22?”“ and when
n=—1, 7 becomes 1.)
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Fig. 11. Von Mises stress, G versus 7 and n, 7, = 0.5 and p, = 1.
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Fig. 12. Von Mises stress, G versus 7 for n =2.39 and n = 0 (homogeneous), 7, = 0.5 and p, = 1.

5583



5584 A. Oral, G. Anlas | International Journal of Solids and Structures 42 (2005) 5568-5588

~

;"

[
ArWNRFRO

>

I
I
jm R e |

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
(®) &

Fig. 13. t4./p versus r/r,, n is (a) positive and (b) negative, ri/r, = 0.5, pi/p=1and T = 5.

5. Concluding remarks

In this study, effects of radially varying moduli on the stress distribution of nonhomogeneous anisotropic
cylindrical bodies are investigated. A system of equations is obtained for the most general nonhomogeneous
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fully anisotropic cylindrical body. Closed-form stress solutions for nonhomogeneous orthotropic axisym-
metric cylindrical body are obtained with Young’s and shear moduli varying according to a power law,
r". Results are verified using a three-dimensional finite element model. A pressurized thick walled cylinder
is studied in detail. Stresses for various values of n are obtained including the homogeneous case (n = 0).

Although very difficult and expensive to manufacture, above results show that FGM systems can be de-
signed for various purposes of applications. Material distribution can be tailored to obtain a desired stress
distribution.
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Appendix A

Generalized Hooke’s law is:

€r app app ap dig ais dge g,
€0 app Ay dx dy dys Ay )
€ ap;z daxy asz  dz  dzs  dsze 0
_ (A1)
Yoz a4 Qx4 Q34 Q44 445 Q46 Toz
Viz a5 dys dazs  dss  dss dse Tz
L Vro L d16 26 d36 d4e  dse Ao | | Tro
Orthotropic compliance:
'a“ ain as 0 O 0 ]
d;p dx ars 0 0 0
az apn ayn 0 0 0
, (A.2a)
0 0 0 (227 0 0
0 0 0 0 dss 0
L 0 0 0 0 0 Ao |
where
1 1 1
ayn =, Aapn =4, a3 =",
Er'r E Ezz
v V. Vo
ap=——, ap=—-, an=——, (A.2b)
Er; zz E99
1 1
Agq = ,  As5s = y  dee = )
z Grz Gr()
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Differential operators for the system of Egs. (12) and (11) are as follows:

, & 2B O 1@ (Bu , dBu dfys 1 0
No=bugz== 500+ Ps 2aez+< dr)

or dr 730 (A.3a)

o0 r dr

(B B 2P 1B\ @ 1 dB @ (1dy 2dp Eha) D
r? 2 r dr r dr JOro0 2 dr 00* r dr r dr dr2 /0O

Bas ﬂ46 o’ Bia B\ @ | Bis O @_ﬂ_ B\ @
ﬂ24 ( r T o200 \ 2 + 2 ) oro6? + + 2 or?

Bis 1 dpis  1dhs) D
+( + 0

P2 dr or di? (A.3b)
y Bos B\ @ (Bu ﬁ56 0" Bis @ (B Bu  dBu\ O
N3 ﬁ24@ 3 ( + r ) 0r200 72 T or 662+ r 00’ r * r * dr ) 0r?
o (PP 1B O (B B 1 3B 0
r2 2 r dr ) oro0 B2 dr ) o0?
1dp, 0 Bas 1 dPus
L —— =% A3
r dr 6r+( r2 dr 60 (A3¢)
PR MR A TIPS @Hdﬁzz
29 r 0r3d0 72 200> woor o0t dr ) or?
3dby O (2 fu 2B 1 dfe) & (s 1 dhg) 0
r dr 0r200 3 B2 dr 2 dr ) orof? A B dr ) og®
C(Bu 1dB, 2dBy  dBy)\ @ %+ﬁ_g dpse +1 d*Brs) O
rr r dr r dr dr? Jorr  \ 43 P > dr r dr? ) 0roo
n %Jr% Bss 1 dpy  2dBi,  1dBs 1 dBp\ o
r Ao dr A dr B dr 2 A ) o0?
By 1dB,  1d°B,)\ 0 2815 2By 1 dByg 2 dBy 1 d’By) D
Pu_ _ SPu 2 9 (s 2P - e 2 - < A.
+(r3 2 dr +r dr? 6r+ * + i 3 dr B dr 2 dr? )00 (A-3d)

Integrating constants, C, C;, C, and obtained from boundary conditions are:
¢ = [En{mm (04 200+ 24 2ig ™ - (04 2000 = 24 g 4 (0420 - 14 Dy
ntd,
2+t 20 “)) n 4npo(<n £+ 44 2)g 0 — (04 2)(n— 2+ g
”)

+Fz((n+2)(n+,1+2)(n—x+2)( (r+4) rf))}]/[(,

() (=24 2)g; — (n+2)(n+ A+ 2)g )T

(Ada)
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nth
C, = [2Ttpi (2(n +2)(n+ A+ 2)529/15{,/1 (”1( ) _ ri("ﬂ))
+ ((n F D)+ A+ 2)(n— i+ 2)veEon

+((n+ 2)2 _ )LZ)ESQ(FSZ + vz,,u)) (”F 3) ;T-i( ) +1)>)
_ 0 _ent2) ()
+ 2np, | 2(n +2)(n+ A+ 2)Epug_; | F; — 7
(0 1)+ 2 2) (0 = 2+ 2w+ (0 +2)" = P2V Egg (B, + vor) ) (7 ffz"*”))

+E((n )4+ A+ 2)(n— A+ 2)En (7;’ - r(_+1))>] /K, (A.4b)
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+ ((n + 2)2 o )”Z)E((;() (FSZ + Vzr,u)) (l_”i(2n+/l+2) . fi(n+)">>)
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- 4HT
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where K is:

K =2n[ (14 )(n+ 24+ 2)(n = 2+ 2veBopit (0 +2) = 22)Egy (B + vo10)

3n+/2+1)
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i i i
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and u, g;, g_; are given below:

—0 —0 —0
o= 4Ey(vo-E, — v Epy)
="

— 5 (A.6a)
(Egg — Vo E)((n+2)" = 17)
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—=0
+ A)E
g = v b v A (A.6b)
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— WE
&) = Vat Vg (n _0) =, (A6C)
2E,,

References

Alshits, V.1., Kirchner, H.O.K., 2001. Cylindrically anisotropic, radially inhomogeneous elastic materials. Proc. R. Soc. Lond. A 457,
671-693.

Awaji, H., Sivakumar, R., 2001. Temperature and stress distributions in a hollow cylinder of functionally graded material: the case of
temperature-independent material properties. J. Am. Ceram. Soc., 1059-1065.

Chen, T., Chung, C.-T., Lin, W.-L., 2000. A revisit of a cylindrically anisotropic tube subjected to pressuring, shearing, torsion,
extension and a uniform temperature change. Int. J. Solids Struct. 37, 5143-5159.

Durodola, J.F., Attia, O., 2000. Deformation and stresses in functionally graded rotating disks. Compos. Sci. Technol. 60, 987-995.

Giiven, U., Celik, A., 2001. On transverse vibrations of functionally graded isotropic linearly elastic rotating solid disks. Mech. Res.
Commun. 28, 271-276.

Horgan, C.O., Chan, A.M., 1999a. The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic
materials. J. Elasticity 55, 43-59.

Horgan, C.O., Chan, A.M., 1999b. The stress response of functionally graded isotropic linearly elastic rotating disks. J. Elasticity 55,
219-230.

Jabbari, M., Sohrabpour, S., Eslami, M.R., 2002. Mechanical and thermal stresses in a functionally graded hollow cylinder due to
radially symmetric loads. Int. J. Pres. Ves. Pip. 79, 493-497.

Jabbari, M., Sohrabpour, S., Eslami, M.R., 2003. General solution for mechanical and thermal stresses in a functionally graded hollow
cylinder due to nonaxisymmetric stead-state loads. J. Appl. Mech.—T ASME 70, 111-118.

Kim, J.H., Paulino, G.H., 2002. Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J.
Appl. Mech.—T ASME 69, 502-514.

Lekhnitskii, S.G., 1963. Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco (English translation).

Liew, K.M., Kitipornchai, S., Zhang, X.Z., Lim, C.W., 2003. Analysis of the thermal stress behaviour of functionally graded hollow
circular cylinders. Int. J. Solids Struct. 40, 2355-2380.

Tarn, J.Q., 2001. Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads. Int. J.
Solids. Struct. 38, 8189-8206.

Ting, T.C.T., 1996. Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic material. Proc. R.
Soc. Lond. A 452, 2397-2421.

Ting, T.C.T., 1999. New solutions to pressuring, shearing, torsion and extension of a cylindrically anisotropic material elastic circular
tube or bar. Proc. R. Soc. Lond. A 455, 3527-3542.

Yang, Y.Y., 2000. Time-dependent stress analysis in functionally graded materials. Int. J. Solids Struct. 37, 7593-7608.



	Effects of radially varying moduli on stress distribution of nonhomogeneous anisotropic cylindrical bodies
	Introduction
	Stresses in a nonhomogeneous anisotropic cylindrical body
	Governing equations
	Stress function formulation
	Nonhomogeneous orthotropic axisymmetric case
	Nondimensionalization of equations

	Closed-form solution for nonhomogeneous orthotropic axisymmetric case
	Results
	Example 1: verification using FE method
	Example 2: different degree of material nonhomogeneity varying n
	Example 3: torsional effect

	Concluding remarks
	Acknowledgments
	Appendix A
	References


